Building a Date Table

Date tables in themselves are nothing new. Every data warehouse and business intelligence project includes one of those and typically it is one of the first tables which we find on our list of implementation tasks. Surprisingly, however, I am finding that in many implementations the omnipresent date table cannot support some analytics. In this post I will outline a few considerations which we need to take into account when building date tables in general, and some which apply specifically to SSAS.

UPDATE (9th October 2011): If you are a PowerPivot user (or would not mind using an OData feed) there is a simple way to get a date/calendar table as there is a free one available on the Azure DataMarket. I recently blogged about this new project in my Introducing Project DateStream (CodePlex) post.

UPDATE 2 (16 October 2011): John Simon recently published a nice T-SQL script which can be used to create and populate  a date table on his blog. Have a look if you need one!

Grain, Key and Format

In general, date tables are on a daily/date grain. This is because the lowest level of reporting we need to do is very often on full days. Even if we need to analyse on time intervals smaller than a day, we should still build a Date and a Time table to support this. Why? Because if we pack it all in the same table we end up with too many rows and this is something we typically want to avoid in any dimension. As we have a row per day, one of our columns is inevitably based on the calendar date. It is also typically the dimension key. As with all other dimension tables, we need to be able to join the table to our fact tables and this is done on our key. To keep our fact tables as small as possible, we need the smallest possible data type for our keys, and in the case of a Date this is usually an integer. However, unlike with other dimensions, we do not have to have a meaningless integer for our surrogate key because it does not give us any advantage. It is very easy to convert between a datetime and an int and in SQL Server datetime is 8 bytes, while int is 4. In SQL 2008+ we have another type suitable for our date table key – date, which is 3 bytes. However, for compatibility reasons, it is frequently better to stick to an int. Luckily, we also have the very convenient ANSI/ISO 8601 standard to follow in order to make our integer dates easier to work with. If we do encode them with the YYYYMMDD format, (thus the 15th of January 2011 becomes 20110115), we can easily sort on the column and compare two dates with the standard > and < operators. Additionally, we also escape the ambiguities around date formats in the USA and the rest of the world.


Building the date key column is a good start but to allow for better analytical capabilities we need to add other attributes. As in most cases we need to analyse our data not only on days, but also on larger intervals (e.g. Months, Quarters and Years), we need to add columns for each of them. A typical requirement is to support both Financial and Calendar date hierarchies. As with dimensions it is ok to have many columns, we can add one for each combination of the type of calendar and period (e.g. FinancialMonth and CalendarMonth, FinancialQuarter and CalendarQuarter, etc.). Other interesting attributes we may want to have materialised in the table are the likes of Weekends, Public Holidays (even though we need to maintain these), Solstice/Equinox and PhaseOfMoon (thanks for Thomas Kejser for mentioning these in an online conversation recently). Basically, for a fully functional date table we need to consider anything which could be of business value without going to extremes.

Of course, when working with SSAS we also want to have an integer key for each attribute and possibly a common name for it. This multiplies the number of columns we need by two – one Id and one Name column for each of the attributes we have decided to implement. Some attention needs to be spared when determining the formats of each attribute Id. If we are to be building a hierarchy out of a collection of attributes we want those to form a nice natural hierarchy. That is – each child member should not have two parents with different Ids. To illustrate the concept, let’s consider two different months – January 2011 and January 2012. While they are the first month of the calendar year, they represent different entities when reporting. We do not aggregate data to January only, but to January in each respective year. Therefore, if we were to write a SQL query to get data for January 2011 and our Ids for both of these members are 1, we would also need to use the Year attribute to get the values we need. Effectively, our hierarchy would have two children with identical Ids of 1 with different parents (with Ids of 2011 and 2012). This is a particular problem when working with SSAS as it definitely prefers unique Ids for each separate attribute member. There is a very easy solution – we can include both the Year and the Month number in the MonthId. In our case, January 2011 gets an Id of 201101 and January 2012 – 201201. Now we don’t have the same issue. Similarly, we must pay attention when we construct the Ids of other attributes which participate in our hierarchies like Quarter (YYYYQQ) and Half Year (YYYYHH).


The week is a special case in the calendar. While we can say that Days roll up to Months, which roll up to Quarters, which in turn roll up to Half Years and Years, Weeks are a different story. If we are not using a special calendar like a 4-4-5 calendar, we are dealing with a real-world entity, which does not naturally belong to only one larger period. In most cases we do not have to worry about the week falling between Day and Month as business understands that this is not a very easy to work with hierarchy. However, business users very often are ignorant about the fact that weeks do not roll up nicely to years, too. We can again read ISO 8601, which also deals with the Week->Year problem. Basically, the ISO has come up with a simple solution – if we have a week which has dates in two years, we count it towards the year which contains more dates (or, the year which contains the Thursday of the week). Why is this important? Well, we can simply split a week in two, however, this means that certain weeks in our table contain less than 7 days. If we compare such weeks with a Weekly Growth calculation we will notice a problem – the amounts aggregated to them are smaller than usual. Similarly, on a graph showing weekly amounts, we have a dip as the two parts of the same week are plotted as separate points. If the users do not care, then it is not a problem, but it is something we should consider and ask about when building the week attribute in our date table.


The date table has a limited amount of rows and we have to make a decision on how many are enough. Some developers build date tables with ranges all the way from 1900 to 2100, or even further. As we have roughly 365.25 days per year (note how 1900 is not a leap year, not is 2100 – something Excel doesn’t know), for 10 years of data we end up with ~3652 rows. With 100 years we have 36525 rows. It is quite doubtful that a data warehouse will contain data for all these years. In most cases it contains a bit of historical data and is designed to keep data for another 20-50 years. To optimise the performance of the queries using the date table it is a good idea to have a dynamic range of dates. In our ETL we can easily keep expanding the range as needed, or collapse it if we ever purge fact data. One thing which is often overlooked when picking the date range is the fact that many times queries depend on the completeness of the date range. A major mistake, which we must avoid are basing the date table on fact data and allowing gaps in the range, and having incomplete top-level periods.

The first problem is easy to explain. Zealously trying to keep the date dimension as small as possible by reducing the number of days (i.e. rows) to only the applicable ones for our fact data can introduce gaps in the overall table. In example, if we have no data for 26th of January because our business was closed for Australia Day, and we “optimise” the date table to exclude this day from the date table, all analytics which depend on counting the number of dates in January will be skewed. An average calculation doing Sales/NumberOfDaysPerMonth will divide by 30, not 31. One of the reasons for having a date table at the first place is to avoid such problems. Hence, gaps in the date table must be avoided.

Secondly, we must also ensure that all top-level periods (i.e. Year usually is the top level in the Calendar Hierarchy) must be also complete. It is not acceptable to cut off the date range with a month, so we have a constant number of dates. Even if our fact data is implemented over a fixed window of 24 months (rolling), we should not do the same with the date table. In example, if we are in September 2011 and we have fact data for 24 months prior to this (e.g. September 2009 – September 2011), the date table should also include data for months prior to that (e.g. January 2009 – September 2011). The reason is the same as before – all calculations doing Amount/NumberOfPeriodsWithinAPeriod would be wrong for 2009. Furthermore, if we use something like window functions in SQL partitioning by year and counting the months within the period to compare equivalent ones will be incorrect. The first month of 2009 would be September and the first in 2010 – January. Because of such issues, it is best to keep all top level periods complete. A solution could be removing data from the date table once we are not interested in the complete top level period. In the case of the 24 rolling months, we can remove all of 2009 with all its periods/rows once we move to 2012 and we are interested in January 2010 – January 2012.

In SSAS all date functions like ParallelPeriod and ClosingPeriod work with relative periods. To get the ParallelPeriod for January 2010 in 2009, SSAS will determine that January 2010 is the first month in 2010, go back to 2009 and pick the first month there. If the first month is September 2009, we will get that returned.


As with other dimensions, we should also have an Unknown member in the date dimension. While with all other dimensions we usually pick a value like -1 for the Unknown member Id and Name of “Unknown”, with a date table things a slightly different as we often have columns which are some sort of a date/time data type and we cannot cast -1 to a date in a meaningful way. Therefore, in many cases we can pick a complete outlier, like 19000101, which we use for storing Unknowns. Depending on the scenario, we may not need to do that, but if we do, there is nothing wrong with doing that as long as we make sure that it is clear that it is a special case. If the data starts in 2001 and we pick 20000101 as an unknown value many users will be wondering why there is some data against that date.


The best date table is the one we don’t notice and take for granted. Given that it is not something that changes at all, the structure of the date table is the one common over many different implementations and whether in SQL Server, SSAS or PowerPivot, the fundamentals stay the same. It can be shared and is part of the base of virtually every BI solution. It, unfortunately, is built wrong very often, thus severely impairing the capability of the system it is a part of. With the arrival of self-service BI I could imagine an increasing need for practical advice on this specific data modelling technique and I hope this article helps with delivering a bit of it.

Using the DSV to its Full Potential

The Data Source View in Analysis Services is a very powerful abstraction of the data source and it can help us overcome some scenarios in an easy and clean way. Many times we look for MDX or programmatic solutions to problems, which can be tackled best in our data. While for complex tasks we would be better off extending the ETL process, some simple ones can and should be implemented in the DSV.


As an introduction to the topic I would like to explain briefly what the DSV actually is. It can be conceptualised as a database view on top of the data source. By default all tables which we need for building the Analysis Services database (typically dimensions and facts) are appearing in the DSV as table bindings (exactly as if we do a SELECT * FROM Table). If we have no foreign keys defined in our database, SSAS will not show us the relationships in the DSV. However, we can define logical relationships in the DSV, thus connecting the tables on related columns, which are then used for automatically determining dimension relationships to the measure groups.


There are two important ways to modify the DSV, which allow us to add more columns to the existing tables and to modify the way the existing columns are shown:

Named Queries




If we right-click on a table in the DSV, we can select to replace the table with a Named Query. A Named Query is essentially a T-SQL statement, which is equivalent to a database view definition. By utilising Named Queries we can alter the way we see the tables and their column in SSAS. In example, we could concatenate columns, implement CASE logic, etc. Named Queries can be thought of as equivalent to database views.


Named Calculations


A named calculation is a SQL statement which adds a column to a table without modifying the table binding. It gives us an easy way to define a new column without changing the whole query. The statement defining the column is in T-SQL and it behaves the same way as a new column in a Named Query (or a SELECT statement). If we just want to add one more column (e.g. Display Order, Code+Description concatenation, etc.), we can simply define a Named Calculation. Also, as the name suggests, Named Calculations can be commonly used for defining a leaf-level calculation without modifying a large fact table’s SELECT statement in a Named Query.


The column we define here appears in both the DSV table and in the Dimension Designer window:


These two DSV functions can be used in many scenarios. Most importantly, there are a few when they yield better performance, faster development and easier maintenance:

Leaf-level calculations

If we have the common requirement to perform leaf-level calculations and then aggregate this up the hierarchy, as opposed to aggregating and then calculating, the best way to do this is in a SQL statement on the fact table. Alternatively, we can do this in and MDX statement:

 SUM(DESCENDANTS(Dim.CurrentMember,,LEAVES), MeasureCalc)

However, it comes at a price. Since SSAS would have to do the calculation for each leaf and then sum this up the hierarchy, this could take a long time to perform. Also, SSAS would not be able to use pre-processed aggregations and the calculations will be done at execution time. To avoid this we could add a new column to the fact table and do the calculation there (in SQL), using the column as a new measure in the cube, which can then be aggregated by SSAS as any other measure. The performance gain is usually substantial and using a Named Query or a Named Calculation should always be the preferred option.

Description Attributes

Often we need to perform a concatenation between different dimension attributes, which we can use as a Description attribute while slicing the cube, or when providing reports from the SSAS database. A very easy way to achieve such a requirement is to use our DSV and concatenate the column we need in a new column in the dimension table, which we can expose as a new attribute in the dimension. A task such as concatenating an Account Code and Account Description into an Account Long Description (i.e. [Account Code] + ‘-‘ + [Account Description]) becomes very easy to implement within the DSV without modifying the ETL or any tables.

Composite Keys

Sometimes we need to build unique keys for attribute column in a dimension. A good example is a Date dimension, which does not have unique keys for non-leaf levels such as Month. Often developers have Month Key of 1,2,3-12. This does not make a good Month key in SSAS as it is not unique for higher levels such as Year, Quarter, etc. There are a number of ways to tackle this common scenario. While the recommended approach would be to build a concatenation between Year-Quarter-Month as a Month Key in the dimension table, we can also achieve this by either selecting all of the columns as key columns for the attribute in the dimension attribute properties. However, this would give us a concatenated key in MDX and this could sometimes be undesirable. A yet simpler and cleaner solution is to concatenate the relevant columns in the DSV by using a Named Query. Instead of the typical

SELECT col1, col2,.., MonthKey, colx, coly, coly FROM DimDate

we can write

SELECT col1, col2,…,YearKey+QuarterKey+MonthKey AS MonthKey, colx, coly, coz FROM DimDate

This way we can use the MonthKey column directly as a key for our Month attribute.

While this is useful for a Date dimension, it can also be useful for any other composite key definition in our dimensions.

Other possible applications of DSV Named Queries and Named Calculations are the implementation of

  • Sort Order attribute, in cases when we need custom sort of the dimension attributes
  • Restricting the data which comes into the cube dynamically based on a certain condition (think of a Date dimension, which includes only relevant periods)
  • Combining tables – by a SQL join
  • Replacing 0s with NULLs (the opposite can be done automatically in SSAS) for our measures

Basically, in a DSV we can “correct” our data to make it suitable for our cube without changing the ETL.

Last but not least, we can also transform tables to conform to a star-schema-like design. If we want to show a proof of concept on top of a normalized OLTP database, we could avoid the ETL complexities, as well as building a datamart, and use SQL to join/split tables in dimension and fact tables, which are suitable for cube development. While this could work in post-POC scenarios, it would be better to take a cautious approach to it as there are many scenarios when it would either not work, or will be too slow.

And a word of warning – your DSV could become slow because of over-use of complex Named Queries. This could be painful when minimising cube processing time is crucial, or when the DSV starts timing out and queries take hours to execute. Luckily, in most cases we can simply move these large queries forward – to the ETL where we have more time and better tools (e.g. SSIS).

Do Business Analysts make good dimensional modellers??

Recently I had the (dis)pleasure of working with Business Analysts, who also thought that they are good in dimensional modelling. so, I had to implement BI solutions (including cubes) on top of their database design. I will show an example (about 95% the same as the actual design), where the idea of letting BAs go into dev territory does not yield the best results:


This “dimensional model” was created by an experienced BA. Some “features” are missing here:
1. The fact table had EffectiveFrom and EffectiveTo dates
2. The relationships between some Dim Tables were 1-1 ?!
3. The Time dim (the only one properly implemented on its own – on the bottom of my example) had columns like: DateTimeName nvarchar(100), DateTimeKey nvarchar(100), YearName nvarchar(100), etc..
4. The Some Tables on the top had nothing to do with the rest (in fact a colleague of mine reckons they are there to fill in the white space on the top of the A3 printout)

Another design, which is better, but still pretty bad showed up after my training on Dimensional Modelling (1hr to go through EVERYTHING, including M2M relationships, Parent-Child hierarchies, Type 2 dimensions, etc):

Obviously, the designer (a developer actually) did grasp some concepts. However, my explanation of a star schema must have been not too clear..

Hope that you had some fun with these two diagrams..and I am sure many developers get in a similar situation, especially when someone else designs their databases. But two points:

1. Ask the BAs to analyse the business and their requirements – not to design the database
2. 1 hour of training on dimensional modelling will not make you an expert

Combining Slowly Changing Dimensions and Current Dimension Versions

When we need to see historical changes of a dimension in our OLAP cube the common practice is to implement it as a SCD – or a Slowly Changing Dimension. There are a few ways to do this and a really good definition of the different types of SCDs can be found in Wikipedia: Slowly Changing Dimension. Also, there are quite a few articles on Implementing SCD ETLs in SSIS, two of which are:
  • SCD Wizard Demo – SSIS Junkie blog example of a package using the Slowly Changing Dimension transformation in SSIS
  • MSDN Article on the Slowly Changing Dimension transformation in SSIS

Since SQL Server Integration Services 2005 and 2008 include a SCD transformation it is not too hard to implement such dimensions.

Here I am discussing a typical requirement – to be able to have a SCD and a Current version of the dimension.

First, it is important to notice that a SCD should have two dimension keys: a unique surrogate key identifying every version of the dimension members and a non-unique code, which is common for all versions for a dimension member. This is also very important if we want to be able to determine the current version of a dimension member. An example of a very simple dimension table utilising this design is:

Here we have two distinct dimension members with Code of 1 and 2. Member1 has two versions and Member2 has three. The SKeys (surrogate keys) for these versions are unique but the codes stay the same for each member. Also, notice the From and To dates which allow us to distinguish the periods for the member versions. We can have an IsActive or IsCurrent bit column, which shows us the latest version of a node, but we can also just filter on dates which are 9999-12-31, which will give us the same result.

Assuming the described design I will move on to discuss the ways to build a dimension in SSAS.

First, the standard way to link the dimension table to our fact table is through the surrogate key. We can have a regular relationship between the two tables. As the fact data is usually also linked to a Time dimension, fact records linked against the periods between the From and To dates of our SCD will be linked to that versions SKey. An example of a fact table with a few rows, which can be linked to the dimension table above is:

The row with a FactKey of 1 will be linked against Member1Ver1, while FactKey 2 will go against Member1Ver2. Therefore, when we slice our cube by Time and our dimension we will see:

This is the standard way to implement our SCD and these are the results we would expect. Now, we get a new requirement. We want to be able to see both this and an aggregation against the current version of our dimension. We have a few ways to implement it. One obvious way is to create another dimension containing only the current dimension members. This can be easily achieved if we add a Named Query in our DSV, which shows only the current dimension members:

, Code
, Description
FROM DimTable
WHERE ToDate = ‘9999-12-31’

The result will be:

Then we need to replace our fact table with a Named Query, which shows the DimSKeys for current version dimension members:

SELECT ft.FactSkey
, dt_current.DimSKey
, ft.TimeKey
, ft.Amount
FROM FactTable ft
INNER JOIN DimTable dt
ON ft.DimSKey = dt.SKey
INNER JOIN DimTable dt_current
ON dt.Code = dt_current.Code
WHERE dt_current.ToDate = ‘9999-12-31’

This will give us the following result:

When we slice our cube, all records for Member1 will be against the latest version:

Implementing this, we can have two dimensions in our cube, so our users can use the one that makes more sense for their needs:

  • Dimension and
  • Dimension (Historical), and the Historical designation stands for, in technical terms, a SCD

However, we can also implement this in a different way, which allows us to avoid building such logic in a view or our DSV. The trade-off is some space on our disks and one more column in our fact table. Instead of adding a new column through writing SQL, we can simply add the dimension Code in the fact table. Then, we can build our dimension again by getting the latest versions, but instead of having the SKey as a dimension key, we can use the Code. It is of course unique across all dimension members, as long as we filter our the non-current versions. The query for doing this is exactly the same as the one we used before. However, we need to change our fact table design and add a DimCode column:

Then, we create two dimensions again, but we link the Historical dimension with the DimSKey column and the Current one with the DimCode column. The result of slicing the cube by the current version is exactly the same as before. The trade-off is space vs. processing time and CPU usage. It is up to the developer to choose the more appropriate way to build the solution.

So far I discussed two ways of having our SCD and Current Version dimension in different dimensions in our cubes. There is, however a way to combine both in the same dimension. To do this, we need to have two levels in the dimension: a parent level, which contains the current version of the dimension members, and a child level, which contains the historical versions. In example:


This way the historical versions aggregate up to the current version and we can use either level, depending on what we want to achieve. To build this, we can use our current dimension table and add a parent level through SQL. This way, we do not need to update all records when a new version comes:

, dt.Code
, dt.Description
, dt_p.SKey AS ParentSKey
FROM DimTable dt
INNER JOIN DimTable dt_p
ON dt.Code = dt_p.Code
WHERE dt_p.ToDate = ‘9999-12-31’

The result is:

Then, we can build our Parent-Child dimension and we can use the Parent level is we want to have current versions and the Child level for the historical ones.

This approach allows us to combine the two dimensions into one. It is also possible to implement it in a non-parent child fashion because the hierarchy is not ragged.

It is always advisable to make sure we actually need a SCD and avoid it whenever possible because it is not always intuitive for users to use one. Splitting our fact data on multiple rows can be surprising for users and understanding how the historical dimension works and the multiple nodes it consists of can be a problem. However, it lets us satisfy a common requirement and therefore it is quite important to know how to build.

Spreading Non-Transactional Data Along Time

In some cases we need to be able to analyse non-transactional data for discrete periods along a time dimension. An example of such a case is a collection of invoices, which have start and end dates for a period, but are not otherwise connected to a time axis. We may have such invoices with these properties:

Invoice Id
Start Date
End Date

One of the invoices may be:

Invoice Id: 34821432
Start Date: 2008-10-15
End Date: 2009-03-14
Amount: 15,000.00

and another one:

Invoice Id: 34934221
Start Date: 2008-12-01
End Date: 2009-05-30
Amount: 6,500.00

If the company we are building this for is daily deducting a fee for its services (e.g. funds management, software maintenance, etc.), we may have to be able to spread the amount in smaller periods, like months or days and then aggregate the smaller amounts along a time dimension.

To do this we have to first store the data in a relational table and then write some SQL to do the trick for us.

First, we should create a table valued function which returns all the dates at a specified granularity, such as days, from the Start to the End dates and the count of all the periods in between (in our case is is a count of days):

CREATE FUNCTION udf_Create_Daily_Date_Spread
      @Start_Date datetime
    , @End_Date datetime
RETURNS @Daily_Spread TABLE (
      Date_Id datetime
    , Count_Of_Days int
    DECLARE @Count int
    SET @Count = 0

    IF @Start_Date >= @End_Date

    WHILE @Start_Date <= @End_Date
        INSERT INTO @Daily_Spread(Date_Id)
        SELECT @Start_Date

        SET @Start_Date = DATEADD(d, 1,@Start_Date)
        SET @Count = @Count + 1

    UPDATE @Daily_Spread
    SET   Count_Of_Days = @Count


After having created these functions, we can use the CROSS APPLY statement to create the even spread:

SELECT             Invoice_Id
FROM Invoice_Source inv
CROSS APPLY udf_Create_Daily_Date_Spread(inv.Start_Date, inv.End_Date) cdds

After running the sample data through this code, we will get an even spread for both invoices and we will be able to attach a time dimension to them.

Even though the data size may explode after such a manipulation, Analysis Services provides an excellent way of handling even the largest sets of data. If storage is a problem, we can always choose to break down our data in less periods – instead of days, weeks or months.

Pre-Aggregated Data and Changing Dimensions

Normally when working with data we assume that we have it on the lowest possible grain and we are challenged by the need to aggregate it along various hierarchies. By the nature of BI, we get to work with large sets of detailed data collected by an existing system.

But what happens when we are given the aggregations and we need to work with these instead? Recently Nick Barclay and I were involved in such an implementation. Nick designed a Health and Safety Dashboard and after that I built it with Reporting Services, PerformancePoint, Analysis Services and SQL Server 2005 relational databases. We were told in the beginning of the project that the aggregation business rules are so complicated that rebuilding them for the purposes of the dashboard was way out of scope. I had not had experience with pre-aggregated data and I did not foresee a major problem, which became apparent after a few months of development when the Business Unit hierarchy changed significantly.

Aggregation Rules

In contrast with typical business scenarios when an SSAS function like Sum and some custom roll-ups works perfectly well, the Health and Safety data needed to be aggregated in a complex way and the organisation we built the dashboard for had already invested in a system managing these aggregations. In example, a simple rule would be – if we have more than 1 major incidents in a Business Unit, it gets an Amber score for Safety Compliance. If it has more than 4, it becomes Red. In turn, its parent is the same – if the sum of all major incidents for its descendants is greater than 1, it becomes Amber and with more than 4 – Red. There were also quite a few dependencies between various dimensions and reluctantly we agreed to work with the data the way it was. The following diagram shows the way an aggregate for Major Incidents works:

Major Incidents Aggregation 

Japan doing badly on Major Incidents also makes Asia and Global look bad.

The problem

The actual problem comes from the fact that our dimension hierarchy can change and if it does the aggregations do not make sense historically. We could have a change in our hierarchy:


and we may need to generate the following simple report for before and after the change:


The historical data suggests that something was wrong with China as the only child of Asia before the change in hierarchy, while in fact, the culprit then (and now) was Japan. As we would not be able to see how the hierarchy looked before, we would not be able to analyse the data we have accordingly. Also, we cannot compare data for Asia after the change to data for Asia from before the change along the new hierarchy.

Possible solutions

In my project, the client actually agreed that it is alright to have this handicap in the system and a possible solution was a complete historical rebuild of the aggregations followed by a complete reload of the system data after every hierarchy change. Lucky for us, the data set was not too big and was not expected to grow too much.

Another solution would be to use a Slowly Changing Dimension, so we can show the hierarchy as it was when the aggregations were made – this would improve the analytical value of the data because business users would be able to see why a Business Unit like Asia was Red in the context of an outdated hierarchy.

The best solution would be to build our own aggregations and work with those, as then we are gaining the ultimate flexibility to represent data in the exact way the business users need it, but unfortunately sometimes it is very hard to convince them that spending twice the funds on the same problem is a good thing.